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By applying the singularity subtraction technique to the unsteady driven cav-
ity problem, the stability of the impulsively started flow is investigated, without
smoothing the corner singularity. A second-order spectral projection method allows
localization of the critical Reynolds number for the first Hopf bifurcation in the
interval [8017.6, 8018.8). c© 2002 Elsevier Science (USA)

Key Words: stability of incompressible viscous flows; unsteady driven cavity flows;
critical Reynolds number; Hopf bifurcation.

1. INTRODUCTION

Classical studies on hydrodynamic stability usually concern problems with no-slip con-
ditions on only one simple surface or two parallel surfaces, the prototype being Couette and
Poiseuille flows. This class of studies allows a double simplification of the mathematical
problem: the basic flow is known analytically and the eigenvalue problem for the stabil-
ity analysis is an ordinary differential eigenvalue problem (see the classical monographs
by Chandrasekhar [10] and Drazin and Reid [11]). By contrast, when the flow domain is
characterized by two or three spatial directions with nonperiodic boundary conditions, the
formulation of the stability problem requires solving a partial differential eigenvalue prob-
lem and, moreover, the basic steady flow can be determined in most cases only numerically.

In the particular case of incompressible flows, the analysis of the linear stability involves,
for 2D plane flows, the solution of a biharmonic eigenvalue problem (see, e.g., [6]) and, for
3D flows periodic in one spatial direction, a system of two biharmonic equations coupled on
the solid boundary (see, e.g., [27]). Another possibility is to write the eigenvalue problem
for the coupled system of equations for the primitive variables velocity and pressure as
done, for instance, in [12].

An alternative to the eigenvalue problem approach is the direct simulation of the
flow, a method which allows exploration of the asymptotic character (steady, periodic,
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quasiperiodic, or other) of the solution depending on the value of the relevant parameters.
This approach was employed, for example, by Gustafson and Halasi [18, 19] to study driven
cavity flows by means of both a projection method based on a staggered-grid discretization
and a time-dependent biharmonic formulation using standard finite differences.

However, the direct simulation is rather expensive in computer time since very long
simulations are often needed—in particular when the flow parameters are near the critical
values—so that the use of very efficient solvers is mandatory. On the other hand this approach
presents the advantage of making the flow beyond the first Hopf bifurcation accessible.

Being interested in the stability of two-dimensional flows in confined domains, we devel-
oped a new spectral solver for the solution of the time-dependent Navier–Stokes equations
formulated in primitive variables. The problem is discretized in time by means of a second-
order projection scheme, which has provided the efficient algorithm described in [2]. The
uncoupled solution procedure consists of a viscous step, where one problem for each ve-
locity component is solved, and a projection step, where the incompressibility constraint
is imposed. The second-order BDF approximation of the momentum equation allows us to
follow the fluid dynamics with adequate accuracy. In the present paper, this spectral projec-
tion method is employed to solve the singular driven cavity problem in order to investigate
the behavior of the flow as the Reynolds number increases.

The 2D flow in driven cavities has been extensively studied in the past 40 years, starting
from the pioneering study of Kawaguti [21]. Since then, several works have contributed to
establish a clear picture of the steady solutions to this problem for Reynolds numbers up to
several thousand, mainly by employing vorticity–velocity and biharmonic solvers [13, 14,
30]. More recently, interest has focused on simulating the evolutionary problem and, in this
context, on investigating the stability of the steady solution to determine the periodic solution
through a Hopf bifurcation. These last investigations have been conducted on a rectangular
cavity of aspect ratio 2 [15] and on a square cavity [28] under a suitable regularization of the
singularity of the boundary condition. As originally defined by Burggraf, the driven cavity
problem is characterized by rigid walls all around the flow domain. In this way, physically
complicated inlet or outlet boundary conditions as well as unphysical periodic conditions
are avoided, and the problem represents an ideal test case for investigations on the stability
of the 2D flow inside a closed region.

The driven cavity problem presents however a well-known mathematical difficulty related
to its boundary conditions. Indeed, the motion of the upper walls sliding on the fixed vertical
walls makes the vorticity and the pressure singular in two corners of the cavity [17].

A method for overcoming this difficulty is to clean off the singular component of the
solution by subtracting the analytically known singular solution from the unknown. This
technique was applied for the first time to cavity flow by Schultz et al., [31] who, work-
ing with the biharmonic equation for the streamfunction, subtracted only the first term
of the singular solution of the Stokes problem (creeping flow). More recently the sin-
gularity subtraction scheme has been employed by Botella and Peyret in the primitive
variable formulation [8] and by Auteri et al. in the vorticity–streamfunction uncoupled ap-
proach [4], by including the Stokes contribution as well as the first-order-in-Re term of the
singularity.

This strategy is applied here to the time-dependent problem formulated in terms of the
primitive variables to locate the stability limit of the stationary solution for the singular
driven cavity problem in a square domain and to discover the nature of the periodic solution.
Once the singularity has been subtracted, the problem can be discretized by means of
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a spectral method and numerical solutions free from spatial oscillations due to Gibbs’s
phenomenon can be computed.

The paper is organized as follows. In Section 2 the singular driven cavity problem is
defined by introducing the governing equations and the boundary conditions. In Section 3
the singularity subtraction technique is briefly sketched, the singular solution in the corner is
recalled (Section 3.1), and the problem for the perturbation variables is defined (Section 3.2).
Section 4 illustrates the second-order BDF projection method employed. Section 5 deals
with the spatial discretization, introducing the bases adopted (Section 5.1) and the treatment
of the nonlinear term (Section 5.2). In Section 6 the accuracy of the proposed numerical
method is assessed, for both asymptotic steady solutions and oscillatory unsteady solutions.
The results obtained in the localization of Hopf bifurcation are presented and discussed in
Section 7. Section 8 is devoted to some concluding remarks.

The stability limit reported in this paper was communicated by the second author at the
Fourth Euromech Fluid Mechanics Conference held in Eindhoven from the 19th to the 23th
of November, 2000.

2. IMPULSIVELY STARTED DRIVEN CAVITY PROBLEM

We consider driven cavity flow governed by the incompressible Navier–Stokes equations,
written in dimensionless form as



∂U
∂t − 1

Re∇
2U + (U · ∇)U + ∇P = 0,

∇ · U = 0,

U|∂� = A,

U|t=0 = U0 = 0.

(2.1)

The problem is defined in the square domain � = (0, 1)2 with the upper side of the cavity
sliding to the left at unit velocity. Thus, the Dirichlet boundary datum A for the velocity is
zero everywhere, except at y = 1, where A = −x̂, with x̂ denoting the unit vector (1, 0).

A well-known difficulty of this problem is the presence of singularities at the corners of
the cavity. In particular, at the two upper corners A and B shown in Fig. 1, the pressure and
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FIG. 1. Geometry of the driven cavity problem with its singular corners.
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the vorticity are not finite, due to the discontinuity in the boundary datum for the horizontal
velocity. The singularities at the two lower corners are much weaker (see, for instance, [8])
and therefore no specific treatment is adopted for them in the present work.

3. SUBTRACTION OF CORNER SINGULARITIES

3.1. Solution at Singular Corners

It is known that the steady bidimensional flow in the region sufficiently near a singular
corner can be calculated analytically by considering the solution as an asymptotic expansion.
In particular, the analysis of Batchelor [5] supplied the exact solution for creeping flow.
Subsequently, Gupta et al. [17] and Hancock et al. [20] extended the analysis to a nonzero
Reynolds number.

Let us first consider the singular flow near the top left corner A of coordinates (0, 1). We
look for the solution of the following steady Navier–Stokes problem:{

− 1
Re∇

2u + ∇p + (u · ∇)u = 0, ∇ · u = 0,

u(x, 1) = −x̂, x > 0, u(0, y) = 0, y < 1.
(3.1)

The singular solution of (3.1) near the corner can be written by means of an asymptotic
expansion. Here, we are interested only in the first two terms of the expansion, so that the
truncated singular solution (uA

Re, pA
Re) is defined by

{
uA

Re = uA
0 + Re uA

i ,

pA
Re = pA

0
Re + pA

i ,
(3.2)

with the subscript “i” denoting the “inertial” component of the singular solution. Notice
that the zeroth-order term of the pressure is scaled with the Reynolds number due to the
structure of the dimensionless Stokes problem.

The first component (uA
0 , pA

0 ) of the expansion satisfies the following Stokes problem:{−∇2uA
0 + ∇pA

0 = 0, ∇ · uA
0 = 0,

uA
0 (x, 1) = −x̂, x > 0, uA

0 (0, y) = 0, y < 1.
(3.3)

By virtue of problem (3.3) and neglecting the higher order terms, the second component
(inertial) of the singular solution is found to be governed by the Stokes problem with a
source term in the momentum equation (nonhomogeneous Stokes problem), namely,{−∇2uA

i + ∇pA
i = −(

uA
0 · ∇

)
uA

0 , ∇ · uA
i = 0,

uA
i (x, 1) = 0, x > 0, uA

i (0, y) = 0, y < 1.
(3.4)

Introducing a polar coordinate system (r, θ) centered in the corner A, so that the fluid is
in the region with −π/2 ≤ θ ≤ 0, the analytical solution of these two problems is obtained
by means of variable separation [17, 20] (see also [8]). The solutions to problems (3.3) and
(3.4) for the creeping flow component and the inertial component are given respectively by{

uA
0 (θ) = u0(θ),

pA
0 (r, θ) = p0(θ)

r ,
and

{
uA

i (r, θ) = rui(θ),

pA
i (r, θ) = (ln r)pi.
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For conciseness, we do not report the expressions for the functions u0(θ) = (u0(θ), v0(θ)),
p0(θ), and ui(θ) and the constant pi, since they are all described in the references already
cited.

The singular solution uB, pB due to the discontinuity at the top right corner B is obtained
similarly by considering a second polar system and the interval π ≤ θ ≤ 3π/2. On account of
the symmetry, the two components of the left corner singularity can also be easily obtained
from their counterparts of the right corner and are found to be




uB
Re(r, θ) = uB

0 (θ) + Re uB
i (r, θ) = u0(π − θ) − Re rui(π − θ),

vB
Re(r, θ) = vB

0 (θ) + Re vB
i (r, θ) = −v0(π − θ) + Re rvi(π − θ),

pB
Re(r, θ) = 1

Re pB
0 (r, θ) + pB

i (r) = − 1
Re

p0(π − θ)

r + (ln r)pi.

The sums of the two singular contributions associated with the two upper corners are

{
uS

Re = uA
Re + uB

Re = uA
0 + uB

0 + Re
(
uA

i + uB
i

)
,

pS
Re = pA

Re + pB
Re = − 1

Re

(
pA

0 + pB
0

) + pA
i + pB

i ,
(3.5)

and, by virtue of problems (3.3) and (3.4), for Re > 0 these satisfy the system

{− 1
Re∇

2uS
Re + ∇pS

Re = −(
uA

0 · ∇
)
uA

0 − (
uB

0 · ∇
)
uB

0 ,

∇ · uS
Re = 0.

(3.6)

The values assumed by the singular solution uS
Re on the boundary of the original problem

are




uS
Re(0, y) = uB

Re(0, y), 0 ≤ y ≤ 1,

uS
Re(1, y) = uA

Re(1, y), 0 ≤ y ≤ 1,

uS
Re(x, 0) = uA

Re(x, 0) + uB
Re(x, 0), 0 ≤ x ≤ 1,

uS
Re(x, 1) = −2x̂, 0 ≤ x ≤ 1

(3.7)

and are independent of time.

3.2. Problem for the Time-Dependent Perturbation

Since the solution corresponding to the corner singularities is known analytically, it
can be subtracted from the unknowns of the original problem to obtain a problem for a
perturbation. In the present case, the governing equations are the time-dependent Navier–
Stokes equations while the singular solution corresponds to the steady problem and the
application of the subtraction technique leads to an unsteady problem for the velocity and
pressure perturbations. The procedure of subtracting the steady singular solution was found
to be effective in the solution of the time-dependent vorticity and streamfunction equations
[4]; this was also confirmed subsequently for primitive variable calculations by Botella and
Peyret in [9]. Therefore it is quite natural to apply the same technique also in the time
integration of the primitive-variable equations by means of the fractional step method.
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To this aim, let us introduce the auxiliary unknowns u and p of the perturbation fields
through the definitions

{
U(x, t) = u(x, t) + uS

Re(x),

P(x, t) = p(x, t) + pS
Re(x).

(3.8)

The singular contribution to the velocity solution is given by summing the zeroth-order and
first-order components, namely,

uS
Re = uS

0 + Re uS
i .

By substituting these expressions in the original Navier–Stokes problem (2.1) and consid-
ering Eqs. (3.5) and (3.6), a simple calculation leads to the following problem for the new
unknowns u and p of the perturbation:




∂u
∂t − 1

Re∇
2u + ∇p = −((

u + uS
Re

)
· ∇

)(
u + uS

Re

) + (
uA

0 · ∇
)
uA

0 + (
uB

0 · ∇
)
uB

0 ,

∇ · u = 0,

u|∂� = a = A − uS
Re|∂�,

u|t=0 = −uS
Re.

(3.9)

Thus, the singular subtraction technique leads to an incompressible problem similar to the
original one, but for the nonlinear term which has a more complex structure and for the
modified boundary and initial conditions. When only the Stokes singular contribution is
considered, one has uS

Re → uS
0 = uA

0 + uB
0 and the last two terms involving uA

0 and uB
0 on the

right-hand side of the momentum equation in (3.9) are absent. On the other hand, when the
inertial contribution to the singular solution is retained, the two terms are present. They can
be, however, eliminated by expanding the leading nonlinear term so that the most singular
terms disappear from the momentum equation, thereby improving the accuracy. Thus, the
nonlinear term will be given alternatively by the expressions


((

u + uA
0 + uB

0

)
· ∇

)(
u + uA

0 + uB
0

)
if Re = 0,((

u + Re uS
i

)
· ∇

)(
u + uS

Re

) + ((
uA

0 + uB
0

)
· ∇

)(
u + Re uS

i

)
+ (

uA
0 · ∇

)
uB

0 + (
uB

0 · ∇
)
uA

0 if Re > 0.

(3.10)

Notice that the perturbation velocity u satisfies boundary conditions independent of time
obtained from the boundary datum A of the original problem and the (constant) boundary
value of the singular solution uS . In particular, from (3.7), on the four sides the boundary
datum a for u assumes the values



a(0, y) = aleft(y) = −uB
Re(0, y), 0 ≤ y ≤ 1,

a(1, y) = aright(y) = −uA
Re(1, y), 0 ≤ y ≤ 1,

a(x, 0) = abottom(x) = −uS
Re(x, 0) = −uA

Re(x, 0) − uB
Re(x, 0), 0 ≤ x ≤ 1,

a(x, 1) = atop(x) = −x̂ + 2x̂ = x̂, 0 ≤ x ≤ 1.

(3.11)

We remark that the solution uA
Re (resp. uB

Re) is continuous on the right (resp. left) vertical
side, which is internal to the domain of the corresponding problem. Thus, on the vertical
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sides the following limits are defined:

{
limy→1 a(1, y) = limy→1

[−uA
Re(1, y)

] = x̂,

limy→1 a(0, y) = limy→1
[−uB

Re(0, y)
] = x̂.

(3.12)

These coincide with the value assumed by the velocity on the upper horizontal wall by the
fourth equation of (3.11). This shows that the singularity subtraction technique leads to the
formulation of a new problem with continuous Dirichlet data for the perturbation velocity
u on the entire boundary.

4. SECOND-ORDER PROJECTION METHOD

The perturbation problem is solved by means of an incremental projection method based
on the two-step second-order BDF scheme for the time integration of the momentum equa-
tion (for details see [2] and [16]). We describe here how the scheme is employed to solve
the incompressible problem (3.9) for the perturbation unknowns.

The two-step BDF scheme requires knowing the solution at two time levels. Thus, for
the first step it is necessary to resort to a one-step scheme, and here the Euler formula
has been employed. Moreover, since an incremental projection method is used, an initial
pressure field p0 is needed in addition to the initial velocity u0 = −uS

Re. By the definition
(3.7) of the perturbation pressure we have p0 = P0 − pS

Re. On the other hand, since in
the original Navier–Stokes problem (2.1) we have U|t = 0 = U0 = 0, the associated initial
pressure field P0 can be assumed to be uniform, say P0 = 0. We notice that there is no
instantaneous buildup of the pressure since the impulsive initial motion of the wall is purely
tangential. As a consequence, the initial condition for the perturbation pressure is p0 =
−pS

Re.
As the first time step (k = 0), we employ the incremental projection scheme based on

the two-level Euler time discretization to determine the first velocity u1 and pressure p1.
If we take into account that u0 + uS

Re = −uS
Re + uS

Re = 0, the first viscous diffusion problem
assumes the form

{
u1 − u0

�t − 1
Re∇

2u1 = (
uA

0 · ∇
)
uA

0 + (
uB

0 · ∇
)
uB

0 − ∇p0,

u1
|∂� = a,

(4.1)

and the Poisson problem for the first pressure increment reads

{−∇̂2(p1 − p0) = −(�t)−1∇ · u1,

(∂(p1 − p0)/∂n)|∂� = 0.
(4.2)

Then, for k ≥ 1 we introduce the linearly extrapolated velocity uk+1
∗ ≡ 2uk − uk−1 to

guarantee the second-order accuracy of the explicit approximation of the nonlinear term.
The diffusion step for k ≥ 1 is obtained by applying the BDF scheme to the momentum

equation and, for the case with the intertial component of the singularity included, the
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corresponding problem is obtained in the following form:


3uk+1 − 4uk + uk−1

2�t − 1
Re∇

2uk+1

= −((
uk+1

∗ + Re uS
i

)
· ∇

)(
uk+1

∗ + uS
Re

)
− ((

uA
0 + uB

0

)
· ∇

)(
uk+1

∗ + Re uS
i

)
− (

uA
0 · ∇

)
uB

0 − (
uB

0 · ∇
)
uA

0

−




∇(3p1 − 2p0) for k = 1

1
6∇(14p2 − 11p1 + 3p0) for k = 2

1
3∇(7pk − 5pk−1 + pk−2) for k ≥ 3,

uk+1
|∂� = a.

(4.3)

Then, the projection step is performed through the following Neumann problem for the
pressure increment (pk+1 − pk):{−∇̂2(pk+1 − pk) = − 3

2�t ∇ · uk+1,

(∂(pk+1 − pk)/∂n)|∂� = 0.
(4.4)

Note the different expressions for the “extrapolated” pressure in (4.3) at the two steps with
k = 1 and k = 2. They result from the elimination of the first end-of-step velocity provided
by the relation u1 − �t∇̂(p1 − p0), which is at the origin of the Poisson equation in (4.2).

5. SPATIAL APPROXIMATION BY GALERKIN–LEGENDRE SPECTRAL METHOD

5.1. Fully Discrete Equations

We introduce the finite dimensional space XN = (PN ⊗ PN )2 for the approximation of the
velocity and the space QN̂ = PN̂ ⊗ PN̂ for the approximation of the pressure. The polynomial
order N for the velocity is in general different from the polynomial order N̂ for the pressure;
in particular we will consider N = N̂ + 2 to satisfy the compatibility inf–sup condition (see,
e.g., [7]). To recast (4.3) in a weak form by the Galerkin–Legendre spectral method, we
consider two different bases for approximating velocity and pressure.

Since the velocity field is subjected to Dirichlet conditions, we adopt the basis introduced
by Shen denoed by L∗

n(x), for n = 0, 1, 2, . . . ; for details see [29] and [3]. This basis
includes the first two modes for imposing nonhomogeneous boundary values by means of a
(numerical) lifting described in [3], where the matrix profiles and elements of the stiffness
and mass matrices are also provided.

As far as the pressure approximation is concerned, the choice of the polynomial basis
depends on whether the projection step is formulated as a Darcy problem or as a Poisson
equation. In the present spectral projection method the pressure satisfies a Neumann boun-
dary value problem, and the natural basis for the two-dimensional problem is simply the
direct product of the standard Legendre polynomials normalized so as to obtain a mass
matrix coincident with the identity matrix: L


n̂(x) = √
n̂ + 1/2 Ln̂(x) for n̂ = 0, 1, 2, . . .

For a detailed analysis of the proper choice of the order of the polynomial basis for pressure
and velocity see [1].

These two bases both refer to the interval [−1, 1] and therefore the transformation
x → (2x − 1) is required to match with the unit interval [0, 1] of the considered cavity. The
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velocity and pressure fields, solution to the fractional step equations (4.3) and (4.4) [(4.1)
and (4.2) for the first step], are expanded in the double series as

uk+1
N (x, y) =

N∑
n=0

N∑
m=0

Uk+1
n,m L∗

n(2x − 1)L∗
m(2y − 1), (5.1)

pk+1
N̂

(x, y) =
N̂∑

n̂=0

N̂∑
m̂=0

Pk+1
n̂,m̂ L


n̂(2x − 1)L

m̂(2y − 1), (5.2)

The capital letters U and P denote the arrays of the expansion coefficients and are not to
be confused with the unknowns of the original Navier–Stokes problem (2.1).

The fully discrete momentum equations in weak form are given by the Galerkin method
and read, for the general viscous step with k ≥ 3, as follows.

For k ≥ 3, find uk+1
N ∈ XN , with uk+1

N |∂� = a, such that, for all vN ∈ X0,N = XN ∩ H1
0(�),

(
vN ,

3uk+1
N − 4uk

N + uk−1
N

2�t

)
+ 1

Re

(
∇vN , ∇uk+1

N

)
= −(

vN ,
((

uk+1
N ,∗ + Re uS

i

)
· ∇

)(
uk+1

N ,∗ + uS
Re

))
N

− (
vN ,

((
uA

0 + uB
0

)
· ∇

)(
uk+1

N ,∗ + Re uS
i

))
N

− (
vN ,

(
uA

0 · ∇
)
uB

0 + (
uB

0 · ∇
)
uA

0

)
N

− 1

3

(
vN , ∇

(
7pk

N̂
− 5pk−1

N̂
+ pk−2

N̂

))
, (5.3)

where the discrete counterpart of the inner product has been defined by means of the Gauss–
Legendre quadrature, namely,

(L∗
n(2x − 1)L∗

m(2y − 1), f (x, y))N

=
3
2 (N+1)∑

h=1

3
2 (N+1)∑

k=1

L∗
n(2xh − 1)L∗

m(2yk − 1) f (xh, yk)wh wk, (5.4)

with xh and wh denoting the Gauss–Legendre integration (mapped) points and weights. The
number of points in the quadrature rule has been selected to avoid aliasing errors, which
could produce numerical instabilities at high Reynolds numbers [2].

Choosing XN + ∇̂QN̂ as the functional space for the end-of-step velocity, we find that
the weak form of the projection step of the BDF method reads:

For k ≥ 1, find (pk+1
N̂

− pk
N̂
) ∈ QN̂ such that, for all qN̂ ∈ QN̂ ,

(
∇̂qN̂

, ∇̂
(

pk+1
N̂

− pk
N̂

)) = − 3

2�t

(
qN̂ , ∇ · uk+1

N

)
. (5.5)

5.2. Evaluation of the Nonlinear Term

As already stated, the singularity subtraction technique leads to a new incompressible
problem with the momentum equation different from the original one only for the nonlinear
term. The corresponding term in the weak equation can be evaluated by means of numer-
ical quadrature based on Gauss–Legendre integration points, as done in the solver for the
standard Navier–Stokes problem [2].
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For the sake of simplicity, we first consider the nonlinear term of the momentum equation
obtained by subtracting only the Stokes singular term. For the x component of the momen-
tum equation, noticing that in this case the two last nonlinear terms on the right hand of
the momentum equation in (5.3) are absent, we have the term ((uN + uS

0 ) · ∇)(uN + uS
0 ),

which in weak form yields the matrix elements

Cn,m = (
L∗

n(2x − 1)L∗
m(2y − 1),

((
uN + uS

0

)
· ∇

)(
uN + uS

0

))
N
,

where uS
0 = uA

0 + uB
0 . To determine the values Cn,m , one first introduces the point values

of the perturbation uN = (uN , vN ) at the 3
2 (N + 1) × 3

2 (N + 1) Gauss–Legendre points in
the square [−1, 1]2,1

uN (x, y) → U ≡
{

uN (xh, yk), 1 ≤ (h, k) ≤ 3

2
(N + 1)

}
,

where U = (U,V) and, similarly, the point values of the derivatives of uN at the Gauss–
Legendre integration points,

U (x) ≡
{

∂uN (xh, yk)

∂x
, 1 ≤ (h, k) ≤ 3

2
(N + 1)

}
,

U (y) ≡
{

∂uN (xh, yk)

∂y
, 1 ≤ (h, k) ≤ 3

2
(N + 1)

}
.

All these point values can be evaluated from the Legendre coefficient arrays U = (U, V ) by
means of

U = L∗UL∗T , U (x) = L∗′UL∗T , U (y) = L∗UL∗′T ,

where we have introduced the (rectangular) matrices containing the values of the basis
functions and of their derivatives at the same Gauss–Legendre points:

L∗ ≡
{
L∗

h,n = L∗
n(2xh − 1), 1 ≤ h ≤ 3

2
(N + 1), 0 ≤ n ≤ N

}
,

L∗′ ≡
{
L∗′

h,n = d L∗
n(2xh − 1)/dx, 1 ≤ h ≤ 3

2
(N + 1), 0 ≤ n ≤ N

}
.

The matrix of point values of the Stokes singular component is defined similarly by

uS
0 (x, y) → U S

0 ≡
{

uS
0 (xh, yk), 1 ≤ (h, k) ≤ 3

2
(N + 1)

}
,

with analogous expressions for its derivatives. Since the singular solution component is
constant in time, the corresponding matrices can be computed once and for all.

The array C = {Ch,k, 1 ≤ (h, k) ≤ 3
2 (N + 1)} of the point values of the nonlinear term

((uN + uS
0 ) · ∇)(uN + uS

0 ) is obtained from the relation

C = (
U + U S

0

)
�

[
U(x) + U S

0 (x)

] + (
V + V S

0

)
�

[
U(y) + U S

0 (y)

]
,

1 Calligraphic capital letters are used hereafter to indicate arrays of quantities evaluated at the Gauss–Legendre
integration points.
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where � denotes the element-by-element multiplication of matrices. The contribution of the
nonlinear term to the weak momentum equation is evaluated by means of the direct-product
Gauss–Legendre quadrature formula with 3

2 (N + 1) × 3
2 (N + 1) points, as provided by the

definition (5.4) of the discrete approximation of the inner product. The sought for matrix
C = {Cn,m} of the L2 projection of the nonlinear term is finally given by

C = L∗TWCWL∗,

where the Gauss–Legendre weights have been framed in the diagonal matrix W =
diag (w1, w2, . . . , w 3

2 (N+1)). The nonlinear term ((uN + uS
0 ) · ∇)(vN + vS

0 ) for the y com-
ponent of the momentum equation is evaluated by the same procedure. Notice that the
evaluation of the nonlinear terms by Gauss–Legendre numerical quadrature is much in the
same spirit of Orszag’s old pseudo-spectral method [25]. In fact, it requires at each time step
transforming from the space of the Legendre coefficients to the physical space of the inte-
gration points.

When the inertial component is retained in the singularity subtraction scheme, the com-
plete nonlinear term of the momentum equation in (5.3), expressed in the weak formulation,
yields the vector array

Cn,m = (
L∗

n(2x − 1)L∗
m(2y − 1),

((
uN + Re uS

i

)
· ∇

)(
uN + uS

Re

)
+ (

uS
0 · ∇

)(
uN + Re uS

i

) + (
uA

0 · ∇
)
uB

0 + (
uB

0 · ∇
)
uA

0

)
N .

Thus, the matrix of the coefficients Cn,m is still obtained from the matrix relation C =
L∗TW CWL∗, where C is defined by

C = (
U + Re U S

i

)
�

[
U (x) + U S

Re(x)

] + (
V + Re V S

i

)
�

[
U (y) + U S

Re(y)

]
+ U S

0 �
[
U (x) + Re U S

i(x)

] + V S
0 �

[
U (y) + Re U S

i(y)

] + CAB
0 ,

where

CAB
0 =U A

0 � U B
0(x) + V A

0 � U B
0(y) + U B

0 � U A
0(x) + V B

0 � U A
0(y).

We notice that only the arrays U , U (x), and U (y) change at each time step, while all the
remaining arrays can be evaluated once and for all at the beginning of the computations.

The algebraic problem obtained from the fully discrete equations requires solving, for
each time step, two Helmholtz–Dirichlet problems for the velocity components and one
Poisson–Neumann problem for the pressure. This has been done by employing two different
direct elliptic solvers. The solver for the velocity components was based on the eigen-
decomposition of the mass matrices in the two spatial directions (see [3]) while the solver
for the pressure system was based on the eigen-decomposition of the stiffness matrices. A
detailed and complete description of the BDF spectral projection method is provided in [2].

6. ACCURACY EVALUATION

The accuracy of the method described has been tested by solving the singular driven
cavity problem at different Reynolds numbers. The result are compared with benchmark
solutions obtained by Botella and Peyret [8] by means of a projection method based on
a Chebyshev collocation technique. We consider the behavior of the solver against both
steady solutions (Section 6.1) and unsteady ones (Section 6.2).
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FIG. 2. Vorticity field for the steady flow in the cavity with Re = 1000. Solution computed by the BDF spectral
projection method with P64–P62 with no treatment for the singularity (left) and by substracting the singularity.

6.1. Steady Solutions

The first test has been performed for Re = 1000. Figure 2 presents the vorticity levels of
the steady-state solution using polynomials P64–P62 and a time step �t = 0.001, obtained
without subtracting the singularity (left) and by subtracting it (right). This comparison
demonstrates the importance of the singularity subtraction technique in obtaining a spectral
solution free from Gibbs spatial oscillations (see also [4]).

Some numerical comparisons with the benchmark solutions [8] for Re = 1000 are re-
ported in Tables I, II, and III. In particular, Table I presents the extreme values of the
velocity through the centerlines of the cavity, while Tables II and III contain some local
value of velocity and vorticity through the centerlines in the same points considered in [13]
and [8].

TABLE I

Extrema of the Velocity through the Centerlines of the Cavity with Re = 1000

N umax ymax vmax xmax vmin xmin

Present 16 0.38811 97 0.1719 0.38221 98 0.8477 −0.52067 36 0.0947
24 0.38838 83 0.1717 0.37675 61 0.8419 −0.52698 44 0.0906
32 0.38854 23 0.1717 0.37691 06 0.8421 −0.52705 57 0.0908
48 0.38857 16 0.1717 0.37694 16 0.8422 −0.52707 59 0.0908
64 0.38857 03 0.1717 0.37694 33 0.8422 −0.52707 63 0.0908
96 0.38856 97 0.1717 0.37694 47 0.8422 −0.52707 70 0.0908

128 0.38856 98 0.1717 0.37694 47 0.8422 −0.52707 72 0.0908
160 0.38856 98 0.1717 0.37694 47 0.8422 −0.52707 72 0.0908

Ref. [8] 48 0.38852 71 0.1717 0.37689 91 0.8422 −0.52701 68 0.0908
64 0.38856 95 0.1717 0.37694 39 0.8422 −0.52707 63 0.0908
96 0.38856 98 0.1717 0.37694 47 0.8422 −0.52707 71 0.0908

128 0.38856 98 0.1717 0.37694 47 0.8422 −0.52707 71 0.0908
160 0.38856 98 0.1717 0.37694 47 0.8422 −0.52707 71 0.0908



STABILITY OF SINGULAR DRIVEN CAVITY FLOW 13

TABLE II

Vertical Velocity and Vorticity Values through the Horizontal Centerline

of the Cavity with Re = 1000, N = 160

x v, Ref. [8] v ω, Ref. [8] ω

0.0000 0.00000 00 0.00000 00 −5.46217 −5.46120
0.0391 −0.29368 69 −0.29368 69 −8.24616 −8.24616
0.0547 −0.41037 54 −0.41037 54 −6.50867 −6.50866
0.1406 −0.42645 45 −0.42645 45 3.43016 3.43016
0.5000 0.02579 95 0.02579 95 2.06722 2.06722
0.7734 0.33399 24 0.33399 24 2.00174 2.00174
0.9062 0.33304 42 0.33304 43 −0.82398 −0.82398
0.9297 0.29627 03 0.29627 03 −1.50306 −1.50306
1.0000 0.00000 00 0.00000 00 −7.66369 −7.66289

TABLE III

Horizontal Velocity and Vorticity Values through the Vertical Centerline

of the Cavity with Re = 1000, N = 160

y u, Ref. [8] u ω, Ref. [8] ω

1.0000 −1.00000 00 −1.00000 00 14.7534 14.7524
0.9688 −0.58083 59 −0.58083 60 9.49496 9.49496
0.9531 −0.47233 29 −0.47233 30 4.85754 4.85754
0.7344 −0.18867 47 −0.18867 47 2.09121 2.09121
0.5000 0.06205 61 0.06205 61 2.06722 2.06722
0.2813 0.28036 96 0.28036 96 2.26772 2.26772
0.1016 0.30045 61 0.30045 61 −1.63436 −1.63436
0.0625 0.20233 00 0.20233 00 −2.31786 −2.31786
0.0000 0.00000 00 0.00000 00 −4.16648 −4.16650
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FIG. 3. Vorticity field and streamlines for the impulsively started driven cavity flow with Re = 1000 at t = 6.25.
Solution computed by the BDF spectral projection method, using P96–P94 polynomials.
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FIG. 4. Streamfunction value at the center of the cavity at t = 6.25 and Re = 1000 for varying �t . Differences
between values computed by the second-order BDF spectral projection methods with N = 96 and N̂ = 94 and by
the reference values provided by an O((�t)2)-accurate spectral biharmonic solver with N = 96.

6.2. Unsteady Solutions

We now consider the behavior of the solver during the transient due to the impulsive start
of the upper wall of the cavity. Figure 3 shows the solution at time t = 6.25, with Re = 1000.
The secondary eddy developing on the vertical wall shown in Fig. 3 is identical in shape and
intensity to that obtained by a spectral biharmonic solver based on the Glowinski–Pironneau
method [3].

To further assess the time accuracy of the solver against unsteady solutions, we com-
pare the point value of the streamfunction in the center of the cavity computed with the
proposed projection method with the value obtained by the vorticity–streamfunction solver
with the second-order BDF time integration we have implemented (see Fig. 4). The second-
order slope of the error curve indicates that the employed projection scheme achieves a
true O((�t)2) accuracy. A more detailed account of the order of accuracy for velocity and
pressure, in the relevant norms, of the proposed spectral projection method is provided
in [1].

7. HOPF BIFURCATION IN THE SINGULAR DRIVEN CAVITY

The stability study of singular driven cavity flow is undertaken here by means of a direct
simulation approach. Namely, several long-time simulations at different Reynolds numbers
have been carried out to determine the asymptotic solutions of the problem for increasing
Re. For the numerical computations we employed a Digital Alpha 433au workstation, using
double-precision arithmetic to guarantee the necessary accuracy. In the simulations with
various values of Re, we used the bases P64–P62. The BDF time integration scheme used in
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the work is implicit for the viscous term while it relies upon a fully explicit extrapolation of
the nonlinear terms. Due to such a treatment, a time-step limitation for numerical stability
has been encountered in the simulations. The tests performed have shown that the step
sizes guaranteeing numerical stability also provide solutions with the required accuracy.
A rule of thumb adequate for this purpose has been determined experimentally to be the
relation �t = 10/Re, for the Reynolds numbers and adopted spatial resolutions considered
here.

7.1. Dynamic Indicator

In the analysis of unsteady cavity flows, the choice of the indicators suitable for monitoring
the evolution of the system toward an asymptotic solution represents a critical aspect.
Goodrich et al. [15] and Shen [28] employed the total kinetic energy as an indicator of the
dynamics of the system. As pointed out in [15], different numerical experiments have shown
that significant variations of the flow can still occur after the fluctuations of velocity have
decreased to values smaller than 10−8. As a consequence, to ensure that a true asymptotic
state has been reached, the greatest attention must be paid to the choice of the criterion to
be adopted for stopping the simulation.

The dynamic indicator adopted in the simulations presented here is the total kinetic energy
of the perturbation velocity with respect to the singular solution, namely,

E(t) =
∫

�

|u(x, y, t)|2 dx dy =
∫

�

∣∣U(x, y, t) − uS
Re(x, y)

∣∣2
dx dy.

This choice is suggested by the very nature of the solver, which has the nonsingular auxiliary
variables u(x, y, t) and p(x, y, t) as unknowns.

7.2. Bifurcation: Localization of the Critical Value of Re

To determine the value of the critical Reynolds number, we have first detected two values
of Re, namely Re = 5000 and Re = 10000, for which the asymptotic solution is found to
be steady and periodic, respectively. Then, this interval, assumed to include the first critical
Reynolds number, has been reduced by bisection. In this way, the first critical value Recr

has been localized in the small interval [8017.6, 8018.8).
This result sharpens the estimate Recr = 8000 found by Fortin et al. [12], through a

classical eigenvalue analysis of the linearized Navier–Stokes equations, by means of a
finite element spatial discretization. This difference can be attributed to the absence of an
adequate treatment of the corner singularities in [12].

As will be shown, the system evolves to its asymptotic state with a velocity which
decreases as the Reynolds number approaches its critical value, namely, as the real part of
the more unstable pair of eigenvalues goes to zero. Therefore, carrying the simulations to
convergence with Re very close to Recr would have been too expensive. In these simulations,
to discover whether the asymptotic behavior is a steady state or a periodic solution, the
evolution of the energy fluctuation has been analyzed. In Fig. 5, we present the function
E(t) for different values of Re. This figure points out that, for Re > Recr, the instability
begins to develop for t ≤ 2500. This is even clearer from Fig. 6, where it can be noted that
for t ≈ 2000 the kinetic energy signal presents a “knee.” Our study has revealed that, in the
proximity of the first Hopf bifurcation, the behavior near this point is sufficient to determine
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FIG. 5. Time evolution of the energy oscillation amplitude for different values of Re.

whether the asymptotic solution will be steady or not. In the steady case the oscillations
present a maximum, corresponding to the knee (see the left plot of Fig. 6), while in the
unsteady case the solution tends asymptotically to an oscillatory behavior (see the right plot
of Fig. 6).

To verify whether a time step �t = 10/Re is sufficiently small to guarantee the time ac-
curacy, another simulation with Re = 8017.6 has been carried out using a halved time step
�t = 5/Re = 0.00062. Figure 7 compares the behavior of E(t) using the two time steps.
Both in the initial phase and for large t before reaching the steady asymptotic state, no
appreciable difference is observed.

The accurate localization of the first Hopf bifurcation in the narrow interval [8017.6,
8018.8) has been confirmed by simulating the flows for the two bracketing values of Re,
using a finer spatial resolution with polynomials P96–P94. Moreover, as a final check of the
correctness of our estimate of Recr, we resorted to the vorticity–streamfunction formulation
already considered in Section 6. The spectral solver for the ω–ψ equations is proposed in
[3] and, for the present calculations, is combined with the singularity subtraction technique
described in [4]. This solver enforces integral conditions on the vorticity by means of
the spectral version of Glowinski–Pironneau method and has been implemented using the
second-order-accurate BDF scheme for the vorticity transport equation. The results obtained
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FIG. 6. Energy time series near t = 2000 for Re = 8007 (left) and Re = 8022 (right).



STABILITY OF SINGULAR DRIVEN CAVITY FLOW 17

0 5 10 15 20 25 30
0.9

0.95

1

1.05

1.1

1.15

1.2

t

E

2400 2402 2404 2406 2408 2410

0.8877

0.8877

0.8877

0.8877

0.8877

t

E

FIG. 7. Comparison between the time evolution of E for Re = 8017.6 computed using �t = 0.00124 (solid
line) and �t = 0.00062(+).

by means of this completely different formulation, using the basis P96 for the two scalar
unknowns, led to the same estimate of the interval containing Recr. The advantage of the
present primitive variable method over the ω–ψ approach is that the former can be extended
easily to the 3D equations.

7.3. Steady Solutions

The simulations with Re < Recr lead to steady asymptotic solutions. In Fig. 8, we report
the steady streamlines for Re = 6125, Re = 7500, and Re = 7812.5. These three fields dis-
play the same qualitative behavior. In particular, one observes a primary vortex in the center
of the cavity, secondary vortices near the two lower corners and the right upper corner,
and, finally, a tertiary vortex in the left lower corner. Figure 8 shows that, as the Reynolds
number increases, the tertiary vortex grows and, for Re = 7812.5, also a quaternary vortex
begins to appear in the left lower corner.

7.4. Periodic Solutions

Several long-time simulations have been completed for Re > Recr. In this case, the system
evolves to an asymptotic solution which is a periodic oscillation. For all the Reynolds
numbers in the range 8018.8 < Re < 8750, the solutions exhibit similar time evolutions.
As shown in Fig. 9, after an initial transient (t < 300) the system seems to converge to
an equilibrium with energy fluctuations weaker than 10−8. This equilibrium is, however,

FIG. 8. Steady streamlines for Re = 6250 (left), Re = 7500 (middle), and Re = 7812.5 (right).
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FIG. 9. Time evolution of the kinetic energy E(t) for Re = 8750 (top), Re = 8437 (middle), and Re = 8125
(bottom).
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FIG. 10. Asymptotic time evolution (left) and spectral power density (right) of E(t) for Re = 8125.

unstable and for a time large enough the flow evolves toward a periodic solution with starting
times and amplification rates which depend on (Re − Recr).

This kind of time evolution is probably related to the presence of an unstable saddle
equilibrium, generated by the loss of stability of the stable equilibrium.

The oscillatory asymptotic solution for Re = 8125 is shown in the left plot of Fig. 10.
The periodic character of the solution can be established by means of a Fourier analysis
of E(t). The right plot of Fig. 10 shows the spectral power density of E(t) for Re = 8125,
obtained from a time series of 25,000 points over a time interval of size 3050.

The periodic solution can be represented also by its reconstruction in a bidimensional
phase space. Figure 11 shows the phase portrait obtained using the delay coordinates E(t)
and E(t + τ) with τ = 0.735.

The final periodic oscillation is found to have a fundamental frequency which depends
linearly on Re, as shown by the left plot of Fig. 12 and as also observed by Shen in the
case of the regularized cavity [28]. The linear behavior is, however, valid only up to the
second bifurcation point, the location of which in Re will be described in the following.
For Re = 8018.8, the frequency is f1 = 0.4496, a value very close to the one presented by
Fortin et al. in [12], where f = 0.4517 for Re = 8000. These values agree with the results

FIG. 11. Two-dimensional phase portrait of E(t) for Re = 8125, with τ = 0.735.
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FIG. 12. Frequency (left) and amplitude (right) of energy oscillations for different Re.

of Pan and Glowinski [26]; for instance, at Re = 8500 the present value f = 0.447 falls in
the range 0.440 < f < 0.450 reported by these authors. In contrast, the value of frequency
f = 0.4 reported by Kupferman [22] for the same Re = 8500 seems to be underestimated.

Similarly, the asymptotic mean value of E(t) increases linearly with Re up to the second
bifurcation, as shown by the right plot of Fig. 12, for 7500 ≤ Re ≤ 10,000.

Finally, as already noticed, the asymptotic amplitude of the oscillations depends on the
closeness of Re to Recr; namely, for small supercritical values of the bifurcated solution
the amplitude of the oscillation is O(|Re − Recr|1/2) [12]. Figure 13 shows the oscillation
amplitudes for the value of Re for which it has been possible to reach the asymptotic periodic
solution. In the same figure we present the least-square interpolant of order 1/2 based on the
three points closest to Recr. This curve crosses the horizontal axis for Re ≈ 8018, further
confirming the stability limit estimate.
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FIG. 13. Oscillation amplitude of E(t) for different Re, dots represent values obtained from the simulation;
the continuous line is the curve

√
Re − Recr obtained by least-square fitting of the points, with Recr ≈ 8018.
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7.5. Nature of the Periodic Solution

The analysis of the time series of the energy indicator allowed us to obtain an accurate
estimate of the critical Reynolds number. On the other hand, this analysis does not supply
any information about the fluid dynamic mechanism underlying the periodic behavior. For
this purpose, a visualization approach can be pursued.

To characterize the oscillating component of the flow with Re > Recr, different techniques
can be adopted. In [24], Le Quéré and Behnia visualize the fluctuating temperature fields
of a differentially heated cavity by subtracting a time-averaged temperature field from each
instantaneous temperature field. Similar results can be obtained by applying a bandpass
filter to a series of fields of the considered variable. This second approach is found to be
particularly useful when more than one frequency is present in the solution and we want to
isolate the oscillation associated with only one.

In the present work, the time evolution of the vorticity field has been filtered by a bandpass
filter in the range 0.42 ≤ f ≤ 0.48 to display the fluctuating structures which take part in
the periodic motion. In Fig. 14 we report a time series of nine fluctuating vorticity fields
for Re = 8125, separated by the time interval T/9 = 1/(4 f ) = 0.247, corresponding to a
complete cycle.

The figure emphasizes the existence of an alternate vortex street which turns around the
primary vortex. This vortex street consists of five structures, each presenting a couple of

FIG. 14. Time sequence of fluctuating vorticity fields for Re = 8125 obtained by means of a bandpass filter.
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FIG. 15. Asymptotic time evolution (left) and spectral power density (right) of E(t) for Re = 9765.

adjacent vortices rotating with opposite spin. A similar behavior was described by Le Quéré
et al. for the regularized cavity problem [23].

The formation of the vortex street (and consequently the periodic behavior of the system
for Re > Recr) seems to be due to the loss of stability of the shear layer which separates the
primary vortex from the secondary vortex and the cavity walls.

7.6. Preliminary Analysis of the System beyond the First Bifurcation

Some preliminary investigations have been carried out on the behavior of the system
beyond the first Hopf bifurcation. For Re = 9765 a second incommensurate frequency
f2 = 0.2736 is found to be active. In Fig. 15 we present the asymptotic time evolution
and the spectral power density of E(t) for Re = 9765.

In this case, the quasi-periodic behavior of the asymptotic solution for Re = 9765 can be
represented by the reconstruction of the attractor in a phase space with three dimensions.
Figure 16 shows the two-dimensional torus corresponding to the quasi-periodic solution.
The Poincaré section of this attractor is presented in Fig. 17.

FIG. 16. Reconstruction in three-dimensional phase space of E(t) for Re = 9765, with τ = 0.7.
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FIG. 17. The Poincaré section of the attractor for Re = 9765, with τ = 0.7.

This preliminary analysis beyond the first bifurcation led us to suppose that the system
passes through a second Hopf bifurcation for a second critical Reynolds number located in
the interval [9687, 9765).

8. CONCLUSIONS

In this paper, we presented a numerical investigation on the stability properties of the
singular driven cavity problem. The dynamics of this system is analyzed by means of the
time series of the kinetic energy obtained by the direct numerical simulation of the unsteady
two-dimensional Navier–Stokes equations.

As a first result, we confirmed the existence of a Hopf bifurcation as the Reynolds number
increases. By means of a bisection technique we were able to locate, for the first time, the
critical Reynolds number in the narrow range [8017.6, 8018.8). These figures are quite near
to the value obtained by Fortin et al. by means of an eigenvalue analysis based on a finite
element spatial discretization. However, we claim better accuracy of our stability estimate
for the singular driven cavity flow since the main singularities have been taken into account
analytically.

Moreover, by analyzing the kinetic energy time series, we can formulate a hypothesis
about the dynamical portrait of the system in the phase space. Indeed, before attaining its
final asymptotic behavior, the solution seems to reach a steady state, with an oscillation
amplitude as small as 10−8—very small if compared with the oscillations in the initial
transient, which have magnitude of O(1). This behavior may be caused by the presence of
a saddle equilibrium, which is probably generated by the splitting of a stable equilibrium
for subcritical Reynolds numbers. This fact should be taken into account in selecting the
stopping criteria in time-dependent simulations to avoid stopping before the true asymptotic
solution has been achieved. Moreover, this unstable equilibrium could be one of the possible
solutions obtained by steady solvers.

By visualizing the time evolution of the solution, cleaned of its steady component, we
were able to get an insight into the fluid dynamic mechanism which generates the instability.
Indeed, as the pictures in Fig. 14 show, the time-periodic solution is characterized by the
presence of an alternate vortex street, arising from the loss of stability of the shear layer
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which separates the main vortex from the secondary corner vortices and the cavity walls.
The frequency and the amplitude of the periodic oscillations were found to depend on the
value of Re, as predicted by the theory and as observed in the numerical simulation of the
regularized cavity problem.

We would like to eventually emphasize the role played by the numerical technique in
achieving the accuracy and efficiency required by this kind of investigations. Indeed these
two goals, namely efficiency and accuracy, drove us to develop the proposed Galerkin–
Legendre spectral solver for the solution of the time-dependent Navier–Stokes equations
in two dimensions. By discretizing the problem in time by means of the BDF incremen-
tal projection method we obtained the time accuracy and efficiency needed by the long
simulations to be performed in this kind of stability analysis. Moreover, the singularity
subtraction technique, as proposed by Botella and Peyret, has been extended here to the
time-dependent Navier–Stokes equations to avoid the pollution of the transient solutions by
Gibbs oscillations due to the singular nature of the problem, and very accurate results have
been obtained even by a spectral method, which is generally unsuitable for low regularity
problems.
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